5G Toolbox™
Reference

it
y

MATLAB

R2019b =) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

5G Toolbox™ Reference
© COPYRIGHT 2018-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

September 2018 Online only New for Version 1.0 (Release 2018b)
March 2019 Online only Revised for Version 1.1 (Release 2019a)
September 2019 Online only Revised for Version 1.2 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List

1]

System Objects — Alphabetical List

2|

Objects — Alphabetical List

3|

iii

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

getPathFilters

Get path filter impulse response for link-level MIMO fading channel

Syntax

pathFilters = getPathFilters(channel)

Description

pathFilters = getPathFilters(channel) returns path filter impulse responses for
the link-level multi-input multi-output (MIMO) fading channel channel. Use
pathFilters together with the pathGains output argument returned by the channel
object to reconstruct a perfect channel estimate.

Examples

Reconstruct Channel Impulse Response Using CDL Channel Path Filters

Reconstruct the channel impulse response and perform timing offset estimation using
path filters of a Clustered Delay Line (CDL) channel model with delay profile CDL-D from
TR 38.901 Section 7.7.1.

Define the channel configuration structure using an nrCDLChannel System object. Use
delay profile CDL-D, a delay spread of 10 ns, and UT velocity of 15 km/h:

v = 15.0;

fc = 4e9;

¢ = physconst('lightspeed');
fd = (v*1000/3600)/c*fc;

UT velocity in km/h

carrier frequency in Hz

speed of light in m/s

UT max Doppler frequency in Hz

o® o of o°

cdl = nrCDLChannel;
cdl.DelayProfile = 'CDL-D';
cdl.DelaySpread = 10e-9;
cdl.CarrierFrequency = fc;
cdl.MaximumDopplerShift = fd;

getPathFilters

Configure the transmit array as [M N P Mg Ng] =[2 2 2 1 1], representing 1 panel
(Mg=1, Ng=1) with a 2-by-2 antenna array (M=2, N=2) and P=2 polarization angles.
Configure the receive antenna array as [M N P Mg Ng] =[1 1 2 1 1], representing a
single pair of cross-polarized co-located antennas.

cdl.TransmitAntennaArray.Size = [2 2 2 1 1];
cdl.ReceiveAntennaArray.Size = [1 12 1 1];

Create a random waveform of 1 subframe duration with 8 antennas.
SR = 15.36€6;

T = SR * 1le-3;

cdl.SampleRate = SR;

cdlinfo = info(cdl);
Nt = cdlinfo.NumTransmitAntennas;

txWaveform = complex(randn(T,Nt),randn(T,Nt));

Transmit the input waveform through the channel.
[rxWaveform,pathGains] = cdl(txWaveform);

Obtain the path filters used in channel filtering.

pathFilters = getPathFilters(cdl);

Perform timing offset estimation using nrPerfectTimingEstmate.
[offset,mag] = nrPerfectTimingEstimate(pathGains,pathFilters);
Plot the magnitude of the channel impulse response.

[Nh,Nr] = size(mag);

plot(0: (Nh-1),mag, 'o:");

hold on;

plot([offset offset], [0 max(mag(:))*1.25], 'k:"', 'LineWidth',2);
axis([0 Nh-1 0 max(mag(:))*1.25]);

legends = "|h|, antenna " + num2cell(1l:Nr);
legend([legends "Timing offset estimate"]);
ylabel('|h|");

xlabel('Channel impulse response samples');

1-3

1 Functions — Alphabetical List

T T T b T T T
: - |h|, antenna 1
0.09 o |h|, antenna 2]
R Timing offset estimate
0.08 $ -
0.07 [B i
0.06]
Z 005f : 1
0.04 " é 1
0.03[;] 1
0.02 _ 1
I i -’:.:'.
e ’ . . _
001 P S
b0 @ B g 0 ¢ i 00 Rug.g o 4
0 2 4 6 8 10 12 14 16

Channel impulse response samples

Input Arguments

channel — MIMO fading channel
nrCDLChannel | nrTDLChannel

MIMO fading channel, specified as an nrCDLChannel or nrTDLChannel System
object™. The objects implement the link-level MIMO fading channels specified in TR
38.901 Section 7.7.1 and Section 7.7.2, respectively.

1-4

getPathFilters

Output Arguments

pathFilters — Path filter impulse response
Ny-by-N, real matrix

Path filter impulse response, returned as an N-by-N, real matrix, where:

* N, is the number of impulse response samples.
* N, is the number of paths.

Each column of the matrix contains the filter impulse response for each path of the delay
profile.

Data Types: double

References

[1]1 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

System Objects
nrCDLChannel | nrTDLChannel

Introduced in R2018b

1-5

1 Functions — Alphabetical List

1-6

getTransportBlock

Get transport block from UL-SCH or DL-SCH encoder

Syntax

trblk
trblk
trblk

getTransportBlock(encUL)
getTransportBlock(encDL,trblkID)
getTransportBlock(,harqlD)

Description

trblk = getTransportBlock(encUL) returns the transport block from the specified
uplink shared channel (UL-SCH) encoder System object. The function assumes that a
transport block was previously loaded into the specified UL-SCH encoder by using the
setTransportBlock function.

trblk = getTransportBlock(encDL,trblkID) returns the transport block from the
specified downlink shared channel (DL-SCH) encoder System object encDL for the
specified transport block number trb1lkID. The function assumes that a transport block
was previously loaded into the specified DL-SCH encoder by using the
setTransportBlock function.

trblk = getTransportBlock(,harqID) returns the transport block loaded for

the specified hybrid automatic repeat-request (HARQ) process number harqID. Specify
hargID in addition to the input arguments in any of the previous syntaxes.

Examples

Retrieve Transport Block from UL-SCH Encoder with Multiple HARQ Processes

Generate a random sequence of binary values corresponding to one transport block of
length 5120.

getTransportBlock

trBlkLenl = 5120;
trBlkl = randi([0® 1],trBlkLenl,1, 'int8');

Create and configure an UL-SCH encoder System object with multiple HARQ processes
and the specified target code rate.

targetCodeRate = 567/1024;
encUL = nrULSCH('MultipleHARQProcesses', true);
encUL.TargetCodeRate = targetCodeRate;

Load the transport block into the UL-SCH encoder for HARQ process number 1.
setTransportBlock(encUL,trBlkl,1);

Call the encoder with QPSK modulation scheme, 1 transmission layer, an output length of
10,240 bits, redundancy version 0, and HARQ process number 1. The encoder applies the
UL-SCH processing chain to the transport block loaded into the object using HARQ
process number 1.

encUL('QPSK',1,10240,0,1);

Retrieve the transport block from the encoder for HARQ process number 1. Verify that
the retrieved block is identical to the block originally loaded into the encoder for this
HARQ process.

tmp = getTransportBlock(encUL,1);
isequal(tmp, trBlkl)

ans = logical
1

Repeat the encoding operation for a new transport block of length 4400 and HARQ
process number 2.

trBlkLen2 = 4400;

trBlk2 = randi([0 1],trBlkLen2,1,'int8");
setTransportBlock(encUL,trBlk2,2);
encUL('QPSK',1,8800,0,2);

Retrieve the first transport block again. Verify that the first transport block is still
unchanged.

tmp = getTransportBlock(encUL,1);
isequal(tmp, trBlkl)

1-7

1 Functions — Alphabetical List

ans = logical
1

Retrieve Transport Block from DL-SCH Encoder with Multiple HARQ Processes

Generate a random sequence of binary values corresponding to one transport block of
length 5120.

trBlkLen = 5120;
trBlk = randi([0 1],trBlkLen,1,'int8");

Create and configure a DL-SCH encoder System object with multiple HARQ processes
and the specified target code rate.

targetCodeRate = 567/1024;
encDL = nrDLSCH('MultipleHARQProcesses', true);
encDL.TargetCodeRate = targetCodeRate;

Load transport block trBlk for transport block number 0 into the DL-SCH encoder,
specifying HARQ process number 2.

harqID = 2;
trBlkID = 0;
setTransportBlock(encDL,trBlk, trBlLkID,harqID);

Call the encoder with QPSK modulation scheme, 3 transmission layers, an output length
of 10,002 bits, and redundancy version 3. The encoder applies the DL-SCH processing
chain to the transport block loaded into the object for HARQ process number 2.

mod = 'QPSK';

nLayers = 3;

outlen = 10002;

rv = 3;

codedTrBlock = encDL(mod,nLayers,outlen,rv,harqID);

Retrieve the transport block for transport block number 0 from the encoder, specifying
HARQ process number 2. Verify that the retrieved block is identical to the block originally
loaded into the encoder for this HARQ process.

tmp = getTransportBlock(encDL,trBlkID,harqID);
isequal(tmp, trBlk)

1-8

getTransportBlock

ans = logical
1

Input Arguments

encUL — UL-SCH encoder
nrULSCH System object

UL-SCH encoder, specified as an nrULSCH System object. The objects implements the UL-
SCH processing chain specified in TR 38.212 Section 6.2.

encDL — DL-SCH encoder
nrDLSCH System object

DL-SCH encoder, specified as an nrDLSCH System object. The object implements the DL-
SCH processing chain specified in TR 38.212 Section 7.2.

trblkID — Transport block number in DL-SCH processing
0 (default) | 1

Transport block number in DL-SCH processing, specified as 0 or 1.

Data Types: double

harqID — HARQ process number
integer from 0 to 15

HARQ process number, specified as an integer from 0 to 15.

Data Types: double

Output Arguments

trblk — Transport block
binary column vector

Transport block, returned as a binary column vector.

Data Types: int8

1-9

1 Functions — Alphabetical List

References

[1]1 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
setTransportBlock

System Objects
nrDLSCH | nrULSCH

Introduced in R2019a

1-10

info

info

Get characteristic information about link-level MIMO fading channel

Syntax

channelInfo = info(channel)

Description

channelInfo = info(channel) returns characteristic information about the link-level
multi-input multi-output (MIMO) fading channel channe'l.

Examples

Get Characteristic Information About TDL Fading Channel

Create an nrTDLChannel System object.

tdl = nrTDLChannel;

To get characteristic information about the channel, call the info function on the object.
channelInfo = info(tdl)

channellnfo = struct with fields:
ChannelFilterDelay: 7
PathDelays: [1x23 double]
AveragePathGains: [1x23 double]
KFactorFirstTap: -Inf
NumTransmitAntennas: 1
NumReceiveAntennas: 2
SpatialCorrelationMatrix: [2Xx2 double]

1-11

1 Functions — Alphabetical List

Input Arguments

channel — MIMO fading channel
nrCDLChannel | nrTDLChannel

MIMO fading channel, specified as an nrCDLChannel or nrTDLChannel System object.
The objects implement the link-level MIMO fading channels specified in TR 38.901
Section 7.7.1 and Section 7.7.2, respectively.

Output Arguments

channelInfo — Characteristic information of channel model

structure

Characteristic information of channel model, returned as a structure. The fields of the
structure depend on the input channel.

* If channelis an nrCDLChannel System object, the channelInfo structure has

these fields.

Parameter Field

Value

Description

PathDelays

Numeric row vector

Delays of discrete channel
paths for each cluster in
seconds, returned as a numeric
row vector. These values
include the effects of
DelaySpread scaling and
KFactorScaling (when
enabled).

ClusterTypes

Cell array of character vectors

Type of each cluster in the
delay profile, returned as a cell
array of character vectors.
Cluster types can be 'L0OS"',
'SubclusteredNLOS', or
'NLOS".

1-12

info

Parameter Field

Value

Description

AveragePathGains

Numeric row vector

Average path gains of the
discrete path or clusters in dB,
returned as a numeric row
vector. These values include
the effect of KFactorScaling
scaling (when enabled).

AnglesAoD

Numeric row vector

Azimuth of departure angles of
the clusters in degrees,
returned as a numeric row
vector. These values include
the effect of angle scaling if
enabled, see the
AngleSpreads property.

AnglesAoA

Numeric row vector

Azimuth of arrival angles of the
clusters in degrees, returned
as a numeric row vector. These
values include the effect of
angle scaling if enabled, see
the AngleSpreads property.

AnglesZoD

Numeric row vector

Zenith of departure angles of
the clusters in degrees,
returned as a numeric row
vector. These values include
the effect of angle scaling if
enabled, see the
AngleSpreads property.

AnglesZoA

Numeric row vector

Zenith of arrival angles of the
clusters in degrees, returned
as a numeric row vector. These
values include the effect of
angle scaling if enabled, see
the AngleSpreads property.

1-13

1 Functions — Alphabetical List

Parameter Field

Value

Description

KFactorFirstCluster

Numeric scalar

K-factor of first cluster of delay
profile in dB, returned as a
numeric scalar. If the first
cluster of the delay profile
follows a Laplacian instead of a
Rician distribution,
KFactorFirstClusteris -
Inf.

NumTransmitAntennas

Numeric scalar

Number of transmit antennas,
returned as a numeric scalar.

NumReceiveAntennas

Numeric scalar

Number of receive antennas,
returned as a numeric scalar.

ChannelFilterDelay

Numeric scalar

Channel filter delay in samples,
returned as a numeric scalar.

Note

* The step of splitting the strongest clusters into subclusters, described in TR 38.901
Section 7.5, requires sorting of the clusters by their average power. If the
NumStrongestClusters property is nonzero (applies only when DelayProfile
is set to 'Custom'), the fields of the information structure are sorted by average
power. That is, the AveragePathGains, ClusterTypes, PathDelays,
AnglesAoD, AnglesAoA, AnglesZoD, and AnglesZoA fields are presented in

descending order of the average gain.

* Ifthe HasLOSCluster property is set to true, the NLOS (Laplacian) part of that
cluster and the LOS cluster are not necessarily next to each other. However, the
KFactorFirstCluster field still indicates the appropriate K-factor.

* If channelis an nrTDLChannel System object, the channelInfo structure has the

following fields.

Parameter Field

Value

Description

ChannelFilterDelay

Numeric scalar

Channel filter delay in samples,
returned as a numeric scalar.

1-14

info

Parameter Field

Value

Description

AveragePathGains

Numeric row vector

Average path gains of the
discrete paths in dB, returned
as a numeric row vector. These
values include the effect of
KFactorScaling (when
enabled).

PathDelays

Numeric row vector

Delays of discrete channel
paths in seconds, returned as a
numeric row vector. These
values include the effects of
DelaySpread scaling and
KFactorScaling (when
enabled).

KFactorFirstTap

Numeric scalar

K-factor of first tap of delay
profile in dB, returned as a
numeric scalar. If the first tap
of the delay profile follows a
Rayleigh instead of a Rician
distribution,
KFactorFirstTapis -Inf.

NumTransmitAntennas

Numeric scalar

Number of transmit antennas,
returned as a numeric scalar.

NumReceiveAntennas

Numeric scalar

Number of receive antennas,
returned as a numeric scalar.

SpacialCorrelationMatrix

Numeric matrix

Combined correlation matrix
or 3-D array, returned as a
numeric matrix.

References

[1]1 3GPP TR 38.901. “Study on channel model for frequencies from 0.5 to 100 GHz.” 3rd
Generation Partnership Project; Technical Specification Group Radio Access

Network.

1-15

1 Functions — Alphabetical List

1-16

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

System Objects
nrCDLChannel | nrTDLChannel

Introduced in R2018b

nrBCH

nrBCH

Broadcast channel (BCH) encoding

Syntax

cdblk = nrBCH(trblk,sfn,hrf,lssb,idxoffset,ncellid)

Description

cdblk = nrBCH(trblk,sfn,hrf,lssb,idxoffset,ncellid) encodes BCH
transport block trblk, as defined in TS 38.212, Section 7.1 [1], and returns the encoded
BCH transport block. The function takes these additional input arguments:

* sfn, the system frame number

* hrf, the half frame bit in synchronization signal / physical broadcast channel (SS/
PBCH) block transmissions

¢ T1ssb, the number of candidate SS/PBCH blocks in a half frame

* 1idxoffset, the subcarrier offset or the SS block index, depending on the input value
of Lssb

* ncellid, the physical layer cell identity number

Examples

Encode BCH Transport Block

Generate a random sequence of binary values corresponding to a BCH transport block of
24 bits.

trblk = randi([0 11,24,1, 'int8"');

Specify the physical layer cell identity number as 321, the system frame number as 10,
and the second half frame.

1-17

1 Functions — Alphabetical List

1-18

nid = 321;
sfn = 10;
hrf = 1;

Specify the number of candidate SS/PBCH blocks as 8. When you specify the number of
candidate SS/PBCH blocks as 4 or 8, you can specify the subcarrier offset kssb as an
input argument to the BCH encoder.

1ssb
kssb

8;
18;

Encode the BCH transport block using the specified arguments.

cdblk = nrBCH(trblk,sfn,hrf,lssb,kssb,nid);

When you specify the number of candidate SS/PBCH blocks as 64, you can specify the SS
block index ssbIdx as an input argument instead of the subcarrier offset kssb.

lssb = 64;
ssbIdx = 13;

Encode the BCH transport block with the updated input arguments.

cdblk2 = nrBCH(trblk,sfn,hrf,lssb,ssbIdx,nid);

Input Arguments

trblk — BCH transport block
24-by-1 binary column vector

BCH transport block, specified as a 24-by-1 binary column vector. The input trblk is the
BCCH-BCH-Message, as defined in TS 38.331 Section 6.2.1 [2]. The BCCH-BCH-Message
contains the master information block (MIB), as defined in TS 38.331 Section 6.2.2.

Data Types: double | int8

sfn — System frame number
nonnegative integer

System frame number, specified as a nonnegative integer.

Data Types: double

nrBCH

hrf — Half frame bit in SS/PBCH block transmissions
01

Half frame bit in SS/PBCH block transmissions, specified as 0 for the first half of a frame
or 1 for the second half of a frame. For more information, see TS 38.214 Section 4.1 [3].

Data Types: double

1ssb — Number of candidate SS/PBCH blocks
41864

Number of candidate SS/PBCH blocks in a half frame, specified as 4, 8, or 64.
Data Types: double

idxoffset — Subcarrier offset or SS block index
nonnegative integer

Subcarrier offset or SS block index, specified as a nonnegative integer.

+ Iflssbis4or8, idxoffset specifies the subcarrier offset, which must be an integer
from 0 to 23.

+ Iflssbis 64, idxoffset specifies the SS block index, which must be an integer from
0 to 63.

Data Types: double

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.

Data Types: double

Output Arguments

cdblk — Encoded BCH transport block
864-by-1 binary column vector

Encoded BCH transport block, returned as an 864-by-1 binary column vector. cdblk
inherits the data type of the input trblk.

Data Types: double | int8

1-19

1 Functions — Alphabetical List

1-20

References

[1]1 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

[2] 3GPP TS 38.331. “NR; Radio Resource Control (RRC) protocol specification.” 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network.

[3] 3GPP TS 38.214. “NR; Physical layer procedures for data.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
nrBCHDecode | nrPBCH | nrPBCHDecode

Topics
“NR Synchronization Procedures”

Introduced in R2018b

nrBCHDecode

nrBCHDecode

Broadcast channel (BCH) decoding

Syntax

scrblk = nrBCHDecode(softbits,L)

[scrblk,errFlag] = nrBCHDecode(softbits,L)
[scrblk,errFlag,trblk,lsbofsfn,hrf,msbidxoffset] = nrBCHDecode(
softbits,L,lssb,ncellid)

Description

scrblk = nrBCHDecode(softbits,L) decodes the log-likelihood ratios (LLRs)
softbits in accordance with TS 38.212, Section 7.1 [1]. The function returns the
decoded scrambled BCH transport block scrblk. The input argument L is the list length
used for polar decoding.

[scrblk,errFlag] = nrBCHDecode(softbits,L) also returns an error flag,
errFlag, to indicate whether scrblk contains an error after decoding.

[scrblk,errFlag,trblk,lsbofsfn,hrf,msbidxoffset] = nrBCHDecode(
softbits,L,lssb,ncellid) also returns the decoded and unscrambled BCH transport
block trblk. The additional input arguments are the number of candidate
synchronization signal / physical broadcast channel (SS/PBCH) blocks, 1ssb, and the
physical layer cell identity number, ncellid. The function also returns these information
elements:

* 1sbofsfn, the four least significant bits (LSBs) of the system frame number
* hrf, the half frame bit
* msbidxoffset, the most significant bits (MSBs) of the index offset

Examples

1-21

1 Functions — Alphabetical List

1-22

Decode Scrambled BCH Transport Block

Generate a random sequence of binary values corresponding to a BCH transport block of
24 bits.

trblk = randi([0 11,24,1,'int8"');

Specify the physical layer cell identity number as 321, the system frame number as 10,
and the second half frame.

nid = 321;
sfn = 10;
hrf = 1;

Specify the number of candidate SS/PBCH blocks as 8. When you specify the number of
candidate SS/PBCH blocks as 4 or 8, you can specify the subcarrier offset kssb as an
input argument to the BCH encoder.

1ssb
kssb

8;
18;

Encode the BCH transport block using the specified arguments.
cdblk = nrBCH(trblk,sfn,hrf,lssb,kssb,nid);

Decode the encoded transport block and recover information by using a polar decoding
list length of 8 bits.

listLen = 8;
[~,errFlag, rxtrblk, rxSFN41lsb, rxHRF, rxKssb] = nrBCHDecode (
double(1-2*bch),listLen,lssb,nid);

Verify that the decoding has no errors.
errFlag
isequal(trblk, rxtrblk)

isequal(bi2de(rxSFN4lsb', 'left-msb'),mod(sfn,16))
[isequal (hrf, rxHRF) isequal(de2bi(floor(kssb/16),1),rxKssb)]

Input Arguments

softbits — Approximate log-likelihood ratio (LLR) soft bits
864-by-1 real-valued column vector

nrBCHDecode

Approximate log-likelihood ratio (LLR) soft bits, specified as an 864-by-1 real-valued
column vector.

Data Types: single | double

L — Polar decoding list length
power of 2

Polar decoding list length, specified as a power of 2.

Data Types: double

1ssb — Number of candidate SS/PBCH blocks in a half frame
4|8|64

Number of candidate SS/PBCH blocks in a half frame, specified as 4, 8, or 64.
Data Types: double

ncellid — Physical layer cell identity number
integer

Physical layer cell identity number, specified as an integer from 0 to 1007.

Data Types: double

Output Arguments

scrblk — Decoded scrambled BCH transport block
32-by-1 binary column vector

Decoded scrambled BCH transport block, returned as a 32-by-1 binary column vector.

Data Types: int8

errFlag — Error flag
0]1

Error flag to indicate whether scrblk contains an error, returned as 0 or 1. If errFlag is
1, then an error has occurred.

Data Types: uint32

1-23

1 Functions — Alphabetical List

trblk — Decoded and unscrambled BCH transport block
24-by-1 binary column vector

Decoded and unscrambled BCH transport block, returned as a 24-by-1 binary column
vector. The output trblk is the BCCH-BCH-Message, as defined in TS 38.331 Section
6.2.1 [2]. The BCCH-BCH-Message contains the master information block (MIB), as
defined in TS 38.331 Section 6.2.2.

Data Types: logical

lsbofsfn — LSBs of the system frame number
4-by-1 column vector

The four LSBs of the system frame number, returned as a 4-by-1 column vector.

Data Types: logical

hrf — Half frame bit in SS/PBCH block transmissions
0]1

Half frame bit in SS/PBCH block transmissions, returned as 0 indicating the first half of a
frame or 1 indicating the second half of a frame. For more information, see TS 38.214
Section 4.1 [3].

Data Types: Llogical

msbhidxoffset — MSBs of index offset
scalar | 3-by-1 column vector

MSBs of index offset, returned as a scalar or 3-by-1 column vector.

o Iflssbis 4 or8, mshbidxoffset is the decoded MSB of the subcarrier index,
returned as a scalar.

» If lssbis 64, the entries of msbidxoffset are the three decoded MSBs of the SSB
index, returned as a 3-by-1 column vector.

Data Types: logical

References

[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

1-24

nrBCHDecode

[2] 3GPP TS 38.331. “NR; Radio Resource Control (RRC) protocol specification.” 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network.

[3] 3GPP TS 38.214. “NR; Physical layer procedures for data.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The input argument L must be a compile-time constant. Include {coder.Constant(L)}
in the -args value of codegen. For more information, see coder.Constant.

See Also

Functions
nrBCH | nrPBCH | nrPBCHDecode

Topics
“NR Synchronization Procedures”

Introduced in R2018b

1-25

1 Functions — Alphabetical List

1-26

nrChannelEstimate

Practical channel estimation

Syntax

nrChannelEstimate(rxGrid, refInd, refSym)
nrChannelEstimate(rxGrid, refGrid)
nrChannelEstimate(_ ,Name,Value)

[h,nVar,info]
[h,nVar,info]
[h,nVar,info]

Description

[h,nVar,info] = nrChannelEstimate(rxGrid, refInd, refSym) performs
practical channel estimation on the received resource grid rxGrid by using a reference
resource grid containing reference symbols refSym at locations refInd. The function
returns the channel estimate h, noise variance estimate nVar, and additional information
info.

[h,nVar,info] = nrChannelEstimate(rxGrid, refGrid) specifies a predefined
reference resource grid refGrid.

[h,nVar,info] = nrChannelEstimate(,Name,Value) specifies options by

using one or more name-value pair arguments in addition to the input arguments in any of
the previous syntaxes.

Examples

Compare Practical and Perfect Channel Estimates

Generate physical broadcast channel (PBCH) demodulation reference signal (DM-RS)
symbols for physical layer cell identity number 42. The time-dependant part of the DM-RS
scrambling initialization is 0.

nrChannelEstimate

ncellid = 42;
ibar SSB = 0;
dmrsSym = nrPBCHDMRS (ncellid,ibar SSB);

Obtain resource element indices for the PBCH DM-RS.

dmrsInd = nrPBCHDMRSIndices(ncellid);

Create a resource grid containing the generated DM-RS symbols.

nTxAnts = 1;
txGrid = complex(zeros([240 14 nTxAnts]));
txGrid(dmrsInd) = dmrsSym;

Modulate the resource grid using the specified FFT length and cyclic prefix length.

nFFT = 512;

cpLengths = ones(1,14) * 36;

cpLengths([1 8]) = 40;

nulls = [1:136 377:512].';

txWaveform = ofdmmod (txGrid,nFFT,cpLengths,nulls);

Create a TDL-C channel model with the specified properties.

SR = 7.68e6;

channel = nrTDLChannel;
channel.NumReceiveAntennas = 1;
channel.SampleRate = SR;
channel.DelayProfile = 'TDL-C"';
channel.DelaySpread = 100e-9;
channel.MaximumDopplerShift = 20;

Obtain the maximum number of delayed samples from the channel path by using the
largest delay and the implementation delay of the channel filter.

chInfo = info(channel);
maxChDelay = ceil(max(chInfo.PathDelays*SR)) + chInfo.ChannelFilterDelay;

To flush delayed samples from the channel, append zeros at the end of the transmitted
waveform corresponding to the maximum number of delayed samples and the number of
transmit antennas. Transmit the padded waveform through the TDL-C channel model.

[rxWaveform, pathGains] = channel([txWaveform; zeros(maxChDelay,nTxAnts)]);

1-27

1 Functions — Alphabetical List

1-28

Estimate timing offset for the transmission using the DM-RS symbols as reference
symbols. The OFDM modulation of the reference symbols spans 20 resource blocks at 15
kHz subcarrier spacing and uses initial slot number 0.

nrb 20;

sCs 15;

initialSlot = 0;

offset = nrTimingEstimate(rxWaveform,nrb,scs,initialSlot,dmrsInd,dmrsSym);

Synchronize the received waveform according to the estimated timing offset.

rxWaveform = rxWaveform(l+offset:end,:);

Create a received resource grid containing the demodulated and synchronized received
waveform.

rxLength = sum(cpLengths) + nFFT*numel(cpLengths);
cpFraction = 0.55;

symOffsets = fix(cpLengths * cpFraction);
rxGrid = ofdmdemod(rxWaveform(1l:rxLength,:),nFFT,cpLengths,symOffsets,nulls);

Obtain the practical channel estimate.
H = nrChannelEstimate(rxGrid,dmrsInd,dmrsSym);
Obtain the perfect channel estimate.

pathFilters = getPathFilters(channel);

H ideal = nrPerfectChannelEstimate(pathGains,pathFilters,nrb,scs,initialSlot,offset);

Compare practical and perfect channel estimates.

figure;

subplot(1,2,1);

imagesc(abs(H));

xLlabel('OFDM Symbol');
ylabel('Subcarrier');
title('Practical Estimate Magnitude');
subplot(1,2,2);

imagesc(abs(H ideal));

xLlabel('OFDM Symbol"');
ylabel('Subcarrier');

title('Perfect Estimate Magnitude');

nrChannelEstimate

Practical Estimate Magnitude Perfect Estimate Magnitude

g
8

Subcarrier
Subcarrier

2
2

200 200

2 4 & 8B 10 12 14 2 4 6 8 10 12 14
OFDM Symbol OFDM Symbol

Input Arguments

rxGrid — Received resource grid
K-by-L-by-R complex array

Received resource grid, specified as a K-by-L-by-R complex array.

* Kis the number of subcarriers equal to NRB x 12, where NRB is the number of
resource blocks in the range from 1 to 275.

* L is the number of OFDM symbols in a slot or in a reference grid.

1-29

1 Functions — Alphabetical List

1-30

* When you call nrChannelEstimate with reference symbols refSym, L is 12 for
extended cyclic prefix and 14 for normal cyclic prefix. Set the cyclic prefix length
by using the 'CyclicPrefix' name-value pair argument.

* When you call nrChannelEstimate with reference resource grid refGrid, L
must equal N, the number of OFDM symbols in the reference grid.

* R is the number of receive antennas.

Data Types: single | double
Complex Number Support: Yes

refInd — Reference symbol indices
integer matrix

Reference symbol indices, specified as an integer matrix. The number of rows equals the
number of resource elements. You can specify all indices in a single column or spread
them across several columns. The number of elements in refInd and refSym must be
the same but their dimensionality can differ. The function reshapes refInd and refSym
into column vectors before mapping them into a reference grid: refGrid(refInd(:))
= refSym(:).

The elements of refInd are one-based linear indices addressing a K-by-L-by-P resource
array.

* K is the number of subcarriers equal to NRB x 12, where NRB is the number of
resource blocks in the range from 1 to 275. K must be equal to the first dimension of
rxGrid.

* L is the number of OFDM symbols in a slot. L is 12 for extended cyclic prefix and 14
for normal cyclic prefix. Set the cyclic prefix length by using the 'CyclicPrefix!
name-value pair argument.

* P is the number of reference signal ports, inferred from the range of values in refInd.
Data Types: double

refSym — Reference symbols
complex matrix

Reference symbols, specified as a complex matrix. The number of rows equals the number
of resource elements. You can specify all symbols in a single column or distribute them
across several columns. The number of elements in refInd and refSym must be the
same but their dimensionality can differ. The function reshapes refInd and refSym into

nrChannelEstimate

column vectors before mapping them into a reference grid: refGrid(refInd(:)) =
refSym(:).

Data Types: single | double
Complex Number Support: Yes

refGrid — Predefined reference grid
K-by-N-by-P complex array

Predefined reference grid, specified as a K-by-N-by-P complex array. refGrid can span
multiple slots.

* K is the number of subcarriers equal to NRB x 12, where NRB is the number of
resource blocks in the range from 1 to 275.

* N is the number of OFDM symbols in the reference grid.

* P is the number of reference signal ports.

Data Types: single | double
Complex Number Support: Yes

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'CyclicPrefix', 'extended' specifies extended cyclic prefix length.

CyclicPrefix — Cyclic prefix length
‘normal’ (default) | 'extended’

Cyclic prefix length, specified as the comma-separated pair consisting of
'CyclicPrefix' and one of these values:

* 'normal' — Use this value to specify normal cyclic prefix. This option corresponds to
14 OFDM symbols in a slot.

* ‘'extended' — Use this value to specify extended cyclic prefix. This option
corresponds to 12 OFDM symbols in a slot. For the numerologies specified in TS
38.211 Section 4.2, the extended cyclic prefix length only applies to 60 kHz subcarrier
spacing.

1-31

1 Functions — Alphabetical List

Data Types: char | string

CDMLengths — CDM arrangement for reference signals
[1 1] (default) | 1-by-2 array of nonnegative integers

Code domain multiplexing (CDM) arrangement for reference signals, specified as the
comma-separated pair consisting of ' CDMLengths' and a 1-by-2 array of nonnegative
integers [FD TD]. Array elements FD and TD specify the length of CDM despreading in
the frequency domain (FD-CDM) and time domain (TD-CDM), respectively. A value of 1
for an element specifies no CDM.

Example: 'CDMLengths', [2 1] specifies FD-CDM2 and no TD-CDM.
Example: 'CDMLengths',[1 1] specifies no orthogonal despreading.
Data Types: double

AveragingWindow — Pre-interpolation averaging window
[0 O] (default) | 1-by-2 array of nonnegative odd integers

Pre-interpolation averaging window, specified as the comma-separated pair consisting of
"AveragingWindow' and a 1-by-2 array of nonnegative odd integers [F T]. Array
elements F and T specify the number of adjacent reference symbols in the frequency
domain and time domain, respectively, over which the function performs averaging before
interpolation. If F or T is zero, the function determines the averaging value from the
estimated signal-to-noise ratio (SNR) based on the noise variance estimate nVar.

Data Types: double

Output Arguments

h — Practical channel estimate
K-by-L-by-R-by-P complex array

Practical channel estimate, returned as a K-by-L-by-R-by-P complex array. K-by-L-by-R is
the shape of the received resource grid rxGrid. P is the number of reference signal
ports.

h inherits its data type from rxGrid.

Data Types: double | single

1-32

nrChannelEstimate

nVar — Noise variance estimate
nonnegative scalar

Noise variance estimate, returned as a nonnegative scalar. nVar is the measured variance
of additive white Gaussian noise on the received reference symbols.

Data Types: double

info — Additional information
structure

Additional information, returned as a structure with the field AveragingWindow.

Parameter Field Value Description

AveragingWindow 1-by-2 array Pre-interpolation averaging

window, returned as a 1-by-2
array [F T]. Array elements F
and T indicate the number of
adjacent reference symbols in
the frequency domain and time
domain, respectively, over which
the function performed
averaging before interpolation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
nrPerfectChannelEstimate | nrPerfectTimingEstimate | nrTimingEstimate

Introduced in R2019b

1-33

1 Functions — Alphabetical List

1-34

nrCodeBlockDesegmentLDPC

LDPC code block desegmentation and CRC decoding

Syntax

[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen)

Description

[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen) concatenates the
input code block segments cbs into a single output data block b1k of length blklen. The
function validates the data dimensions of the input cbs based on the specified base graph
number bgn and output block length blklen. The function removes any filler bits and
type-24B cyclic redundancy check (CRC) bits present in the input cbs. The output err is
the result of the type-24B CRC decoding (if applicable). This process is the inverse of the
low-density parity-check (LDPC) code block segmentation specified in TS 38.212 Section
5.2.2 [1] and implemented in nrCodeBlockSegmentLDPC.

Examples

Back-to-Back LDPC Code Block Segmentation and Desegmentation

Perform code block segmentation of a random sequence of binary input data. When the
base graph number is 1, segmentation occurs whenever the input length is greater than
8448. The input data of length 10000 is split into two code block segments of length 5280.
The code block segments have filler bits and CRC attached. Concatenate the code block
segments using nrCodeBlockDesegmentLDPC. The concatenated result is of the same
size as the original input with CRC and filler bits removed. Check whether the CRC
decoding was successful by checking the error vector.

bgn = 1;
blklen = 10000;
cbs = nrCodeBlockSegmentLDPC(randi([0 1],blklen,1),bgn);

nrCodeBlockDesegmentLDPC

size(cbs)
[blk,err] = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen);
blkSize = size(blk)
err
ans =
5280 2
blkSize =

10000 1

err =
1x2 uint32 row vector

0 0

Display Index Mapping of LDPC Code Block Desegmentation

Create a matrix representing two code block segments. Each element contains the linear
index of that element within the matrix. Concatenate the code block segments using
nrCodeBlockDesegmentLDPC with the specified base graph number and output block
length. To see how input maps onto the output, plot code block segment indices relative
to the corresponding indices in the concatenated input. In each code block segment, the
last 280 bits represent CRC and filler bits. These additional bits are removed from the
recovered data.

cbs reshape([1:10560]"',[1,2);

bgn = 1;

blklen = 10000;

blk = nrCodeBlockDesegmentLDPC(cbs,bgn,blklen);
plot(blk);

xlabel('Code Block Bit Indices');
ylabel('Recovered Data Bit Indices');
title('Code Block Desegmentation Operation');

1-35

1 Functions — Alphabetical List

1-36

Code Block Desegmentation Operation
12000 T T T T T T T T

10000

8000

6000 [1

4000 [.

Recovered Data Bit Indices

2000 [|

0 ral I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7VOOO 8000 S000 10000

Code Block Bit Indices

Input Arguments

chs — Code block segments
real matrix

Code block segments, specified as a real matrix. A matrix with only one column
corresponds to one code block segment without CRC bits appended. If you specify a
matrix with more than one column, each column in the matrix corresponds to a separate
code block segment with type-24B CRC bits appended. In both cases, the code block
segments can contain filler bits.

Data Types: double | int8

nrCodeBlockDesegmentLDPC

bgn — Base graph number

1|2

Base graph number, specified as 1 or 2.
Data Types: double

blklen — Output block length
nonnegative integer

Output block length, specified as a nonnegative integer. If blklen is 0, then both b1k and
err are empty. The function uses blklen to validate the data dimensions of the input
cbs and to calculate the number of filler bits to remove.

Data Types: double

Output Arguments

blk — Concatenated data block
empty vector | real column vector

Concatenated data block, returned as an empty vector (when blklen is 0) or a real
column vector. The function removes any filler bits and type-24B CRC bits present in the
input cbs. The output blk inherits its data type from the input cbs.

Data Types: double | int8

err — CRC error
empty vector | vector of nonnegative integers

CRC error, returned as one of these values:
» Empty vector — The function returns this value when blklen is 0 or if cbs has only
one column (CRC decoding does not take place).

* Vector of nonnegative integers — If cbs has more than one column, err contains the
CRC error bits obtained from decoding the type-24B CRC bits in each code block
segment. The length of err is equal to the number of code block segments (number of
columns in the input cbs).

Data Types: uint32

1-37

1 Functions — Alphabetical List

References

[1]1 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Functions
nrCRCDecode | nrCodeBlockSegmentLDPC | nrLDPCDecode | nrRateRecoverLDPC

Introduced in R2018b

1-38

nrCodeBlockSegmentLDPC

nrCodeBlockSegmentLDPC

LDPC code block segmentation and CRC attachment

Syntax

cbs = nrCodeBlockSegmentLDPC(blk,bgn)

Description

cbs = nrCodeBlockSegmentLDPC(blk, bgn) splits the input data block blk into code
block segments based on the base graph number bgn, as specified in TS 38.212 Section
5.2.2 [1]. The function appends cyclic redundancy check (CRC) and filler bits to each code
block segment in cbs (if applicable). nrCodeBlockSegmentLDPC provides input to low-
density parity-check (LDPC) coders in transport channels, including downlink and uplink
shared channels, and paging channels.

Examples

LDPC Code Block Segmentation

Create a random sequence of binary input data. Perform code block segmentation. When
the base graph number is 1, the segmentation results in one code block segment. When
the base graph number is 2, the segmentation results in two code block segments.
Segmentation occurs only if the input length is greater than the maximum code block
size. The maximum code block size is 8448 when the base graph number is 1 and 3840
when the base graph number is 2.

in = randi([0,1],4000,1);

cbsl = nrCodeBlockSegmentLDPC(in,1);
cbs2 = nrCodeBlockSegmentLDPC(in,2);
size(cbsl)

size(cbs2)

ans =

1-39

1 Functions — Alphabetical List

1-40

4224 1

ans =

2080 2

Display Index Mapping of LDPC Code Block Segmentation

Create a ramp data input and perform code block segmentation. The input of length 4000
is split into two code block segments of equal size with 24B CRC and filler bits attached.
To see how the input maps onto the output, plot the input data indices relative to the
corresponding code block segment indices.

cbs = nrCodeBlockSegmentLDPC([1:4000]"',2);
plot(cbs)

legend('CBS1', 'CBS2")

xlabel('Code Block Bit Indices');
ylabel('Input Data Bit Indices + CRC/Filler');
title('Code Block Segmentation Operation')

nrCodeBlockSegmentLDPC

Code Block Segmentation Operation

4000 T

- |

3500

CBS1
CBs2

T
L

3000 =

2500 -

2000 1

1500 -

1000 -

Input Data Bit Indices + CRC/Filler
=
=
x
\
\

_5 DD i i i i
0 500 1000 1500 2000

Code Block Bit Indices

Input Arguments

blk — Input data block
column vector of real numbers

Input data block, specified as a column vector of real numbers.

Data Types: double | int8 | logical

bgn — Base graph number
1]2

Base graph number, specified as 1 or 2.

2500

1-41

1 Functions — Alphabetical List

1-42

Data Types: double

Output Arguments

chs — Code block segments
integer or real matrix

Code block segments, returned as an integer or real matrix. Each column corresponds to
a separate code block segment. The number of code block segments depends on the
maximum code block size of the LDPC coder, Kcb, and the length of the input blk, B. If
bgnis setto 1, Kcb = 8448. If bgn is set to 2, Kcb = 3840. If B < Kcb, then the function
does not perform segmentation and does not append CRC to the resulting code block. If B
> Kcb, the segmentation results in several smaller code blocks with a type-24B CRC bits
appended.

The function appends filler bits to each code block (with or without CRC) if necessary. The
filler bits ensure that the code block segments entering the LDPC coder have a valid
length and are a multiple of the LDPC lifting size. To accommodate the filler bits
represented by -1, the data type of cbs is cast to int8 when the input bk is logical.
Otherwise, cbs inherits the data type of the input blk.

Data Types: double | int8

References

[1] 3GPP TS 38.212. “NR; Multiplexing and channel coding.” 3rd Generation Partnership
Project; Technical Specification Group Radio Access Network.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

nrCodeBlockSegmentLDPC

See Also

Functions
nrCodeBlockDesegmentLDPC | nrLDPCEncode | nrLDPCEncode | nrRateMatchLDPC |
nrRateMatchLDPC

Introduced in R2018b

1-43

1 Functions — Alphabetical List

1-44

nrCRCDecode

Decode and remove cyclic redundancy check (CRC)

Syntax

[blk,err] = nrCRCDecode(blkcrc,poly)
[blk,err] = nrCRCDecode(blkcrc,poly,mask)
Description

[blk,err] = nrCRCDecode(blkcrc,poly) checks the input data blkcrc for a CRC
error. The function assumes that the input data comprises the CRC parity bits associated
with the polynomial poly. The function returns blk, which is the data part of the input
blkcrc. The function also returns err, which is the logical difference (XOR) between the
CRC comprised in the input and the CRC recalculated across the data part of the input. If
err is not equal to 0, either an error has occurred or the input CRC has been masked. For
details on the associated polynomials, see TS 38.212 Section 5.1 [1].

[blk,err] = nrCRCDecode(blkcrc,poly,mask) XOR-masks the CRC difference
with mask before returning it in err. The mask value is applied to the CRC difference
with the most significant bit (MSB) first to the least significant bit (LSB) last.

Examples

Check Data Block for CRC Error
Check the effect of CRC decoding with and without a mask.

Define a mask corresponding to the radio network temporary identifier (RNTI) equal to
12. Append RNTI-masked CRC parity bits to an all-ones matrix of one data block.

rnti = 12;
blkCrc = nrCRCEncode(ones(100,1), '24C',rnti);

nrCRCDecode

When you perform CRC decoding without a mask, errl is equal to the RNTI because the
CRC was masked during coding. The logical difference between the original CRC and the
recalculated CRC is the CRC mask.

[blk,errl] = nrCRCDecode(blkCrc, '24C');
errl

errl =
uint32
12

When you perform CRC decoding using the RNTI value as a mask, err is equal to 0.

[blk,err2] = nrCRCDecode(blkCrc, '24C',errl);
err2

err2 =

uint32

0

Input Arguments

blkcrc — CRC encoded data
matrix of real numbers

CRC encoded data, specified as a matrix of real numbers. Each column of the matrix is
considered as a separate CRC encoded data block.

Data Types: double | int8 | logical

poly — CRC polynomial
'6' | '11' | '16' | '24A' | '24B